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ABSTRACT:- Quantum machine learning is the 

integration of quantum algorithms within machine 

learning programs. The most common use of the 

term refers to machine learning algorithms for the 

analysis of classical data executed on a quantum 

computer, i.e. quantum-enhanced machine learning. 

While machine learning algorithms are used to 

compute immense quantities of data, quantum 

machine learning utilizes qubits and quantum 

operations or specialized quantum systems to 

improve computational speed and data storage done 

by algorithms in a program. This includes hybrid 

methods that involve both classical and quantum 

processing, where computationally difficult 

subroutines are outsourced to a quantum 

deviceThese routines can be more complex in 

nature and executed faster on a quantum computer. 

Furthermore, quantum algorithms can be used to 

analyze quantum states instead of classical data. 

Beyond quantum computing, the term "quantum 

machine learning" is also associated with classical 

machine learning methods applied to data 

generated from quantum experiments (i.e. machine 

learning of quantum systems), such as learning the 

phase transitions of a quantum system or creating 

new quantum experiments.Quantum machine 

learning also extends to a branch of research that 

explores methodological and structural similarities 

between certain physical systems and learning 

systems, in particular neural networks. For 

example, some mathematical and numerical 

techniques from quantum physics are applicable to 

classical deep learning and vice versa. Furthermore, 

researchers investigate more abstract notions of 

learning theory with respect to quantum 

information, sometimes referred to as "quantum 

learning theory". 

 

I. INTRODUCTION :- 
Quantum-enhanced machine learning 

refers to quantum algorithms that solve tasks in 

machine learning, thereby improving and often 

expediting classical machine learning techniques. 

Such algorithms typically require one to encode the 

given classical data set into a quantum computer to 

make it accessible for quantum information 

processing. Subsequently, quantum information 

processing routines are applied and the result of the 

quantum computation is read out by measuring the 

quantum system. For example, the outcome of the 

measurement of a qubit reveals the result of a 

binary classification task. While many proposals of 

quantum machine learning algorithms are still 

purely theoretical and require a full-scale universal 

quantum computer to be tested, others have been 

implemented on small-scale or special purpose 

quantum devices.\ 

 

Linear algebra simulation with quantum 

amplitudes :-A number of quantum algorithms for 

machine learning are based on the idea of 

amplitude encoding, that is, to associate the 

amplitudes of a quantum state with the inputs and 

outputs of computations. Intuitively, this 

corresponds to associating a discrete probability 

distribution over binary random variables with a 

classical vector. The goal of algorithms based on 

amplitude encoding is to formulate quantum 

algorithms whose resources grow polynomially in 

the number of qubits, which amounts to a 

logarithmic time complexity in the number of 

amplitudes and thereby the dimension of the input. 

Many quantum machine learning 

algorithms in this category are based on variations 

of the quantum algorithm for linear systems of 

equations (colloquially called HHL, after the 

paper's authors) which, under specific conditions, 

performs a matrix inversion using an amount of 

physical resources growing only logarithmically in 

the dimensions of the matrix. One of these 

conditions is that a Hamiltonian which entrywise 

corresponds to the matrix can be simulated 

efficiently, which is known to be possible if the 

matrix is sparse or low rank. For reference, any 

known classical algorithm for matrix inversion 

requires a number of operations that grows at least 

quadratically in the dimension of the matrix, but 

they are not restricted to sparse matrices. 

Quantum matrix inversion can be applied to 

machine learning methods in which the training 

reduces to solving a linear system of equations, for 

example in least-squares linear regression, the 

least-squares version of support vector machines, 

and Gaussian processes.  
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A crucial bottleneck of methods that 

simulate linear algebra computations with the 

amplitudes of quantum states is state preparation, 

which often requires one to initialise a quantum 

system in a state whose amplitudes reflect the 

features of the entire dataset. Although efficient 

methods for state preparation are known for 

specific cases, this step easily hides the complexity 

of the task. 

 

Quantum machine learning algorithms based on 

Grover search :-Another approach to improving 

classical machine learning with quantum 

information processing uses amplitude 

amplification methods based on Grover's search 

algorithm, which has been shown to solve 

unstructured search problems with a quadratic 

speedup compared to classical algorithms. These 

quantum routines can be employed for learning 

algorithms that translate into an unstructured search 

task, as can be done, for instance, in the case of the 

k-medians and the k-nearest neighbours algorithms. 

Another application is a quadratic speedup in the 

training of perceptron. 

An example of amplitude amplification 

being used in a machine learning algorithm is 

Grover's search algorithm minimization. In which a 

subroutine uses Grover's search algorithm to find 

an element less than some previously defined 

element. This can be done with an oracle that 

determines whether or not a state with a 

corresponding element is less than the predefined 

one. Grover's algorithm can then find an element 

such that our condition is met. The minimization is 

initialized by some random element in our data set, 

and iteratively does this subroutine to find the 

minimum element in the data set. This 

minimization is notably used in quantum k-

medians, and it has a speed up of at least  compared 

to classical versions of k-medians, where n is the 

number of data points and k is the number of 

clusters. 

Amplitude amplification is often 

combined with quantum walks to achieve the same 

quadratic speedup. Quantum walks have been 

proposed to enhance Google's PageRank algorithm 

as well as the performance of reinforcement 

learning agents in the projective simulation 

framework. 

 

Quantum-enhanced reinforcement learning :-

Reinforcement learning is a branch of machine 

learning distinct from supervised and unsupervised 

learning, which also admits quantum 

enhancements. In quantum-enhanced reinforcement 

learning, a quantum agent interacts with a classical 

or quantum environment and occasionally receives 

rewards for its actions, which allows the agent to 

adapt its behavior—in other words, to learn what to 

do in order to gain more rewards. In some 

situations, either because of the quantum 

processing capability of the agent, or due to the 

possibility to probe the environment in 

superpositions, a quantum speedup may be 

achieved. Implementations of these kinds of 

protocols have been proposed for systems of 

trapped ions and superconducting circuits. A 

quantum speedup of the agent's internal decision-

making time has been experimentally demonstrated 

in trapped ions, while a quantum speedup of the 

learning time in a fully coherent (`quantum') 

interaction between agent and environment has 

been experimentally realized in a photonic setup. 

 

Quantum annealing :-Quantum annealing is an 

optimization technique used to determine the local 

minima and maxima of a function over a given set 

of candidate functions. This is a method of 

discretizing a function with many local minima or 

maxima in order to determine the observables of 

the function. The process can be distinguished from 

Simulated annealing by the Quantum tunneling 

process, by which particles tunnel through kinetic 

or potential barriers from a high state to a low state. 

Quantum annealing starts from a superposition of 

all possible states of a system, weighted equally. 

Then the time-dependent Schrödinger equation 

guides the time evolution of the system, serving to 

affect the amplitude of each state as time increases. 

Eventually, the ground state can be reached to yield 

the instantaneous Hamiltonian of the system. 

 

Quantum sampling techniques : - Sampling from 

high-dimensional probability distributions is at the 

core of a wide spectrum of computational 

techniques with important applications across 

science, engineering, and society. Examples 

include deep learning, probabilistic programming, 

and other machine learning and artificial 

intelligence applications. 

A computationally hard problem, which is 

key for some relevant machine learning tasks, is the 

estimation of averages over probabilistic models 

defined in terms of a Boltzmann distribution. 

Sampling from generic probabilistic models is 

hard: algorithms relying heavily on sampling are 

expected to remain intractable no matter how large 

and powerful classical computing resources 

become. Even though quantum annealers, like 

those produced by D-Wave Systems, were 

designed for challenging combinatorial 

optimization problems, it has been recently 
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recognized as a potential candidate to speed up 

computations that rely on sampling by exploiting 

quantum effects. 

Some research groups have recently 

explored the use of quantum annealing hardware 

for training Boltzmann machines and deep neural 

networks. The standard approach to training 

Boltzmann machines relies on the computation of 

certain averages that can be estimated by standard 

sampling techniques, such as Markov chain Monte 

Carlo algorithms. Another possibility is to rely on a 

physical process, like quantum annealing, that 

naturally generates samples from a Boltzmann 

distribution. The objective is to find the optimal 

control parameters that best represent the empirical 

distribution of a given dataset. 

 

The D-Wave 2X system hosted at NASA 

Ames Research Center has been recently used for 

the learning of a special class of restricted 

Boltzmann machines that can serve as a building 

blockfor deep learning architectures. 

Complementary work that appeared roughly 

simultaneously showed that quantum annealing can 

be used for supervised learning in classification 

tasks. The same device was later used to train a 

fully connected Boltzmann machine to generate, 

reconstruct, and classify down-scaled, low-

resolution handwritten digits, among other 

synthetic datasets. In both cases, the models trained 

by quantum annealing had a similar or better 

performance in terms of quality. The ultimate 

question that drives this endeavour is whether there 

is quantum speedup in sampling applications. 

Experience with the use of quantum annealers for 

combinatorial optimization suggests the answer is 

not straightforward. Reverse annealing has been 

used as well to solve a fully connected quantum 

restricted Boltzmann machine. 

Inspired by the success of Boltzmann 

machines based on classical Boltzmann 

distribution, a new machine learning approach 

based on quantum Boltzmann distribution of a 

transverse-field Ising Hamiltonian was recently 

proposed. Due to the non-commutative nature of 

quantum mechanics, the training process of the 

quantum Boltzmann machine can become 

nontrivial. This problem was, to some extent, 

circumvented by introducing bounds on the 

quantum probabilities, allowing the authors to train 

the model efficiently by sampling. It is possible 

that a specific type of quantum Boltzmann machine 

has been trained in the D-Wave 2X by using a 

learning rule analogous to that of classical 

Boltzmann machines. 

Quantum annealing is not the only 

technology for sampling. In a prepare-and-measure 

scenario, a universal quantum computer prepares a 

thermal state, which is then sampled by 

measurements. This can reduce the time required to 

train a deep restricted Boltzmann machine, and 

provide a richer and more comprehensive 

framework for deep learning than classical 

computing. The same quantum methods also permit 

efficient training of full Boltzmann machines and 

multi-layer, fully connected models and do not 

have well-known classical counterparts. Relying on 

an efficient thermal state preparation protocol 

starting from an arbitrary state, quantum-enhanced 

Markov logic networks exploit the symmetries and 

the locality structure of the probabilistic graphical 

model generated by a first-order logic template. 

This provides an exponential reduction in 

computational complexity in probabilistic 

inference, and, while the protocol relies on a 

universal quantum computer, under mild 

assumptions it can be embedded on contemporary 

quantum annealing hardware. 

 

Quantum neural networks :-Quantum analogues 

or generalizations of classical neural nets are often 

referred to as quantum neural networks. The term is 

claimed by a wide range of approaches, including 

the implementation and extension of neural 

networks using photons, layered variational circuits 

or quantum Ising-type models. Quantum neural 

networks are often defined as an expansion on 

Deutsch's model of a quantum computational 

network. Within this model, nonlinear and 

irreversible gates, dissimilar to the Hamiltonian 

operator, are deployed to speculate the given data 

set. Such gates make certain phases unable to be 

observed and generate specific oscillations. 

Quantum neural networks apply the principals 

quantum information and quantum computation to 

classical neurocomputing. Current research shows 

that QNN can exponentially increase the amount of 

computing power and the degrees of freedom for a 

computer, which is limited for a classical computer 

to its size. A quantum neural network has 

computational capabilities to decrease the number 

of steps, qubits used, and computation time. The 

wave function to quantum mechanics is the neuron 

for Neural networks. To test quantum applications 

in a neural network, quantum dot molecules are 

deposited on a substrate of GaAs or similar to 

record how they communicate with one another. 

Each quantum dot can be referred as an island of 

electric activity, and when such dots are close 

enough (approximately 10 - 20 nm) electrons can 

tunnel underneath the islands. An even distribution 
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across the substrate in sets of two create dipoles 

and ultimately two spin states,  

 

Hidden Quantum Markov Models :- Hidden 

Quantum Markov Models (HQMMs) are a 

quantum-enhanced version of classical Hidden 

Markov Models (HMMs), which are typically used 

to model sequential data in various fields like 

robotics and natural language processing. Unlike 

the approach taken by other quantum-enhanced 

machine learning algorithms, HQMMs can be 

viewed as models inspired by quantum mechanics 

that can be run on classical computers as well. 

Where classical HMMs use probability vectors to 

represent hidden 'belief' states, HQMMs use the 

quantum analogue: density matrices. Recent work 

has shown that these models can be successfully 

learned by maximizing the log-likelihood of the 

given data via classical optimization, and there is 

some empirical evidence that these models can 

better model sequential data compared to classical 

HMMs in practice, although further work is needed 

to determine exactly when and how these benefits 

are derived. Additionally, since classical HMMs 

are a particular kind of Bayes net, an exciting 

aspect of HQMMs is that the techniques used show 

how we can perform quantum-analogous Bayesian 

inference, which should allow for the general 

construction of the quantum versions of 

probabilistic graphical models. 

 

Fully quantum machine learning :-In the most 

general case of quantum machine learning, both the 

learning device and the system under study, as well 

as their interaction, are fully quantum. This section 

gives a few examples of results on this topic. 

One class of problem that can benefit from 

the fully quantum approach is that of 'learning' 

unknown quantum states, processes or 

measurements, in the sense that one can 

subsequently reproduce them on another quantum 

system. For example, one may wish to learn a 

measurement that discriminates between two 

coherent states, given not a classical description of 

the states to be discriminated, but instead a set of 

example quantum systems prepared in these states. 

The naive approach would be to first extract a 

classical description of the states and then 

implement an ideal discriminating measurement 

based on this information. This would only require 

classical learning. However, one can show that a 

fully quantum approach is strictly superior in this 

case. (This also relates to work on quantum pattern 

matching.) The problem of learning unitary 

transformations can be approached in a similar 

way. 

Going beyond the specific problem of 

learning states and transformations, the task of 

clustering also admits a fully quantum version, 

wherein both the oracle which returns the distance 

between data-points and the information processing 

device which runs the algorithm are quantum. 

Finally, a general framework spanning supervised, 

unsupervised and reinforcement learning in the 

fully quantum setting was introduced in, where it 

was also shown that the possibility of probing the 

environment in superpositions permits a quantum 

speedup in reinforcement learning. Such a speedup 

in the reinforcement-learning paradigm has been 

experimentally demonstrated in a photonic setup. 

 

Classical learning applied to quantum problems 

:-  

The term "quantum machine learning" 

sometimes refers to classical machine learning 

performed on data from quantum systems. A basic 

example of this is quantum state tomography, 

where a quantum state is learned from 

measurement. Other applications include learning 

Hamiltonians and automatically generating 

quantum experiments. 

 

Quantum learning theory:-Quantum learning 

theory pursues a mathematical analysis of the 

quantum generalizations of classical learning 

models and of the possible speed-ups or other 

improvements that they may provide. The 

framework is very similar to that of classical 

computational learning theory, but the learner in 

this case is a quantum information processing 

device, while the data may be either classical or 

quantum. Quantum learning theory should be 

contrasted with the quantum-enhanced machine 

learning discussed above, where the goal was to 

consider specific problems and to use quantum 

protocols to improve the time complexity of 

classical algorithms for these problems. Although 

quantum learning theory is still under development, 

partial results in this direction have been obtained. 

The starting point in learning theory is 

typically a concept class, a set of possible concepts. 

Usually a concept is a function on some domain, 

such as. For example, the concept class could be 

the set of disjunctive normal form (DNF) formulas 

on n bits or the set of Boolean circuits of some 

constant depth. The goal for the learner is to learn 

(exactly or approximately) an unknown target 

concept from this concept class. The learner may 

be actively interacting with the target concept, or 

passively receiving samples from it. 

In active learning, a learner can make 

membership queries to the target concept c, asking 
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for its value c(x) on inputs x chosen by the learner. 

The learner then has to reconstruct the exact target 

concept, with high probability. In the model of 

quantum exact learning, the learner can make 

membership queries in quantum superposition. If 

the complexity of the learner is measured by the 

number of membership queries it makes, then 

quantum exact learners can be polynomially more 

efficient than classical learners for some concept 

classes, but not more. If complexity is measured by 

the amount of time the learner uses, then there are 

concept classes that can be learned efficiently by 

quantum learners but not by classical learners 

(under plausible complexity-theoretic 

assumptions). 

A natural model of passive learning is 

Valiant's probably approximately correct (PAC) 

learning. Here the learner receives random 

examples (x,c(x)), where x is distributed according 

to some unknown distribution D. The learner's goal 

is to output a hypothesis function h such that 

h(x)=c(x) with high probability when x is drawn 

according to D. The learner has to be able to 

produce such an 'approximately correct' h for every 

D and every target concept c in its concept class. 

We can consider replacing the random examples by 

potentially more powerful quantum examples. In 

the PAC model (and the related agnostic model), 

this doesn't significantly reduce the number of 

examples needed: for every concept class, classical 

and quantum sample complexity are the same up to 

constant factors. However, for learning under some 

fixed distribution D, quantum examples can be very 

helpful, for example for learning DNF under the 

uniform distribution. When considering time 

complexity, there exist concept classes that can be 

PAC-learned efficiently by quantum learners, even 

from classical examples, but not by classical 

learners (again, under plausible complexity-

theoretic assumptions). 

This passive learning type is also the most 

common scheme in supervised learning: a learning 

algorithm typically takes the training examples 

fixed, without the ability to query the label of 

unlabelled examples. Outputting a hypothesis h is a 

step of induction. Classically, an inductive model 

splits into a training and an application phase: the 

model parameters are estimated in the training 

phase, and the learned model is applied an arbitrary 

many times in the application phase. In the 

asymptotic limit of the number of applications, this 

splitting of phases is also present with quantum 

resources. 

 

Implementations and experiments :-The earliest 

experiments were conducted using the adiabatic D-

Wave quantum computer, for instance, to detect 

cars in digital images using regularized boosting 

with a nonconvex objective function in a 

demonstration in 2009.Many experiments followed 

on the same architecture, and leading tech 

companies have shown interest in the potential of 

quantum machine learning for future technological 

implementations. In 2013, Google Research, 

NASA, and the Universities Space Research 

Association launched the Quantum Artificial 

Intelligence Lab which explores the use of the 

adiabatic D-Wave quantum computer. A more 

recent example trained a probabilistic generative 

models with arbitrary pairwise connectivity, 

showing that their model is capable of generating 

handwritten digits as well as reconstructing noisy 

images of bars and stripes and handwritten digits. 

 

Using a different annealing technology 

based on nuclear magnetic resonance (NMR), a 

quantum Hopfield network was implemented in 

2009 that mapped the input data and memorized 

data to Hamiltonians, allowing the use of adiabatic 

quantum computation. NMR technology also 

enables universal quantum computing,[citation 

needed] and it was used for the first experimental 

implementation of a quantum support vector 

machine to distinguish hand written number ‘6’ and 

‘9’ on a liquid-state quantum computer in 2015. 

The training data involved the pre-processing of the 

image which maps them to normalized 2-

dimensional vectors to represent the images as the 

states of a qubit. The two entries of the vector are 

the vertical and horizontal ratio of the pixel 

intensity of the image. Once the vectors are defined 

on the feature space, the quantum support vector 

machine was implemented to classify the unknown 

input vector. The readout avoids costly quantum 

tomography by reading out the final state in terms 

of direction (up/down) of the NMR signal. 

Photonic implementations are attracting 

more attention, not the least because they do not 

require extensive cooling. Simultaneous spoken 

digit and speaker recognition and chaotic time-

series prediction were demonstrated at data rates 

beyond 1 gigabyte per second in 2013. Using non-

linear photonics to implement an all-optical linear 

classifier, a perceptron model was capable of 

learning the classification boundary iteratively 

from training data through a feedback rule. A core 

building block in many learning algorithms is to 

calculate the distance between two vectors: this 

was first experimentally demonstrated for up to 

eight dimensions using entangled qubits in a 

photonic quantum computer in 2015. 
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Recently, based on a neuromimetic 

approach, a novel ingredient has been added to the 

field of quantum machine learning, in the form of a 

so-called quantum memristor, a quantized model of 

the standard classical memristor. This device can 

be constructed by means of a tunable resistor, weak 

measurements on the system, and a classical feed-

forward mechanism. An implementation of a 

quantum memristor in superconducting circuits has 

been proposed, and an experiment with quantum 

dots performed. A quantum memristor would 

implement nonlinear interactions in the quantum 

dynamics which would aid the search for a fully 

functional quantum neural network. 

Since 2016, IBM has launched an online 

cloud-based platform for quantum software 

developers, called the IBM Q Experience. This 

platform consists of several fully operational 

quantum processors accessible via the IBM Web 

API. In doing so, the company is encouraging 

software developers to pursue new algorithms 

through a development environment with quantum 

capabilities. New architectures are being explored 

on an experimental basis, up to 32 qbits, utilizing 

both trapped-ion and superconductive quantum 

computing methods. 

In October 2019, it was noted that the 

introduction of Quantum Random Number 

Generators (QRNGs) to machine learning models 

including Neural Networks and Convolutional 

Neural Networks for random initial weight 

distribution and Random Forests for splitting 

processes had a profound effect on their ability 

when compared to the classical method of 

Pseudorandom Number Generators (PRNGs).[84] 

However, in a more recent publication from 2021, 

these claims could not be reproduced for Neural 

Network weight initialization and no significant 

advantage of using QRNGs over PRNGs was 

found.[85] The work also demonstrated that the 

generation of fair random numbers with a gate 

quantum computer is a non-trivial task on NISQ 

devices, and QRNGs are therefore typically much 

more difficult to utilize in practice than PRNGs. 

A paper published in December 2018 

reported on an experiment using a trapped-ion 

system demonstrating a quantum speedup of the 

deliberation time of reinforcement learning agents 

employing internal quantum hardware. 

In March 2021, a team of researchers from 

Austria, The Netherlands, the USA and Germany 

reported the experimental demonstration of a 

quantum speedup of the learning time of 

reinforcement learning agents interacting fully 

quantumly with the environment. The relevant 

degrees of freedom of both agent and environment 

were realized on a compact and fully tunable 

integrated nanophotonic processor. 

 

II. DISCUSSION AND CONCLUSION 
As mentioned above, quantum computing 

can help solvespecialized scientific problems such 

as the modelling of high-temperature 

superconductors, the selection of moleculesfor the 

creation of organic batteries, and drug modelling 

andtesting. There are several challenges in quantum 

machinelearning that need to be addressed on both 

hardware as wellas on software. Firstly, to get the 

benefits of quantum algorithms, highlighted in this 

review, quantum hardware will berequired to be 

practical. Secondly, QML requires the integration 

of interface devices such as qRAM in order to 

encode the classical information in quantum 

mechanical form. Thesehardware challenges are 

nontrivial in nature and must beresolved. Thirdly, 

in order to fully realise QML approaches,the 

caveats in the applicability of quantum algorithms 

needto be resolved. There are four fundamental 

problems associated with quantum algorithms: 

input, output, cost, andbenchmarking.At present, 

there is very little knowledge, if any, regardingthe 

true number of gates that are required to implement 

analgorithm in QML. Since these methods are 

purely conceptual at the moment, the complexity of 

these in terms ofintegration is purely theoretical as 

well. This also impliesthat its not straightforward to 

predict the practical efficiency gain between 

quantum methods and classical ones. Furtherthere 

are no practical benchmarks against modern 

heuristicmethods. 

Note that, while quantum computing has 

great promise interms of efficiency and scale 

relative to classical computing,it is still to be seen if 

this can be fully realised in practice. Indeed, it is 

commonly assumed that any problem thatcan be 

solved by the quantum computing paradigm can 

beresolved by a classic Turing machine. This, 

however, wouldrequire a large scale of integration, 

whereby quantum computers are expected to 

achieve efficiencies that demand muchlower 

quantum integration requirements than those in 

classical machines for comparable computational 

problems. Moreover, there are numerous questions 

regarding the applicationof quantum computing to 

data arising from non-quantum settings that are 

widespread in computer science and 

consumerapplications rather than quantum 

phenomena. 
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